DeepDream: differenze tra le versioni

Da Wiki AI.
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 21: Riga 21:


=== Data augmentation e processamento frattale dell'immagine ===
=== Data augmentation e processamento frattale dell'immagine ===
Tutte le implementazioni viste contemplano l'utilizzo di uno "shift" randomico sui due assi ad ogni iterazione, questo permette lavorare anche sui bordi delle immagini (immagino).
Tutte le implementazioni viste contemplano l'utilizzo di uno "shift" randomico sui due assi ad ogni iterazione, questo permette all'algoritmo di lavorare anche sui bordi delle immagini (immagino).


Importante è il processing di tipo frattale, o "per ottave", nel quale l'immagine sottocampionata e portata alla dimensione dell'immagine originale, per poi essere progressivamente ingrandita: in questo modo i pattern si visualizzano su svariate scale, in modo "frattale".
Importante è il processing di tipo frattale, o "per ottave", nel quale l'immagine sottocampionata e portata alla dimensione dell'immagine originale, per poi essere progressivamente ingrandita: in questo modo i pattern si visualizzano su svariate scale, in modo "frattale".

Versione delle 06:16, 28 mag 2024

DeepDream
Nome Inglese DeepDream
Sigla
Anno Di Creazione 2015-06-18
Versione Corrente
URL https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
Pubblicazione Inceptionism: Going Deeper into Neural Networks
URL Pubblicazione https://research.google/blog/inceptionism-going-deeper-into-neural-networks/


Nel 2015, Alexander Mordvintsev, sviluppatore di Google, ha pubblicato un blog post contenente la descrizione di quello che rimarrà sicuramente uno dei più interessanti e singolari esperimenti fatti con le reti neurali. Alexander è anche un'artista interattivo, e quindi ha un particolare sensibilità nel provare a utilizzare algoritmi e modelli in un modo non convenzionale.

Alexander fa esattamente il seguente tentativo. Presa una rete neurale convoluzionale per la classificazione di immagini, come ResNet, VGG16, o GoogLeNet, il modello va a iterativamente modificare l'immagine di input in modo da massimizzare le attivazioni di uno o più strati della rete neurale, predeterminati.

Sono state viste tre implementazioni:

L'ascesa del gradiente

La particolarità di questo metodo, come si diceva, consiste nell effetturare l'esatto contrario di quanto si fa normalmente durante l'addestramento di una rete neurale. Se durante l'addestramento della rete, infatti, si è utilizzata la discesa del gradiente per aggiornare i valori dei coefficienti degli strati della rete, minimizzando così il valore della funzione di perdita, il modello DeepDream prevede di calcolare i gradienti della perdita rispetto all'immagine, e poi aggiungerli all'immagine: questo intensifica i pattern visti dalla rete in quei layer.

Data augmentation e processamento frattale dell'immagine

Tutte le implementazioni viste contemplano l'utilizzo di uno "shift" randomico sui due assi ad ogni iterazione, questo permette all'algoritmo di lavorare anche sui bordi delle immagini (immagino).

Importante è il processing di tipo frattale, o "per ottave", nel quale l'immagine sottocampionata e portata alla dimensione dell'immagine originale, per poi essere progressivamente ingrandita: in questo modo i pattern si visualizzano su svariate scale, in modo "frattale".

Una cosa molto interessante menzionata nel blog post originale, è che le immagini che emergono "dipendono" dal contenuto originale dell'immagine, a parità di layer esposti.