Fine-tuning: differenze tra le versioni

Da Wiki AI.
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 1: Riga 1:
Pprocesso attraverso il quale un modello pre-addestrato viene adattato per eseguire specifici compiti o migliorare le prestazioni su particolari tipi di dati. Questo processo permette ai modelli di diventare più efficienti in compiti specifici, migliorando la loro precisione e la loro capacità di generalizzazione rispetto ai dati di interesse.
Nome: [[
 
Nome inglese: [[NomeInglese::Fine-tuning]]
 
Processo attraverso il quale un modello pre-addestrato viene adattato per eseguire specifici compiti o migliorare le prestazioni su particolari tipi di dati. Questo processo permette ai modelli di diventare più efficienti in compiti specifici, migliorando la loro precisione e la loro capacità di generalizzazione rispetto ai dati di interesse.


Per il fine-tuning, viene selezionato un set di dati specifico per il compito di interesse. Questo set di dati può essere piccolo rispetto al set utilizzato per il pre-addestramento, ma deve essere altamente rappresentativo del compito specifico da migliorare.
Per il fine-tuning, viene selezionato un set di dati specifico per il compito di interesse. Questo set di dati può essere piccolo rispetto al set utilizzato per il pre-addestramento, ma deve essere altamente rappresentativo del compito specifico da migliorare.
Riga 10: Riga 14:


[[Category:concetto]]
[[Category:concetto]]
__SHOWFACTBOX__

Versione delle 10:35, 11 apr 2024

Nome: "</br></br>Nome inglese: [[NomeInglese" contains a listed "[" character as part of the property label and has therefore been classified as invalid.

Processo attraverso il quale un modello pre-addestrato viene adattato per eseguire specifici compiti o migliorare le prestazioni su particolari tipi di dati. Questo processo permette ai modelli di diventare più efficienti in compiti specifici, migliorando la loro precisione e la loro capacità di generalizzazione rispetto ai dati di interesse.

Per il fine-tuning, viene selezionato un set di dati specifico per il compito di interesse. Questo set di dati può essere piccolo rispetto al set utilizzato per il pre-addestramento, ma deve essere altamente rappresentativo del compito specifico da migliorare.

Durante il processo di fine-tuning, i pesi del modello pre-addestrato sono modificati per adattarsi meglio al compito specifico. Il tasso di apprendimento utilizzato in questa fase è generalmente più basso rispetto alla fase di pre-addestramento, per evitare di sovrascrivere le conoscenze generali acquisite precedentemente.

Il fine-tuning può essere eseguito utilizzando diverse tecniche, tra cui:

  • Aggiustamento dei pesi: i pesi del modello sono direttamente modificati attraverso l'addestramento sul nuovo set di dati.
  • Layer di adattamento: vengono aggiunti nuovi strati al modello pre-addestrato che vengono addestrati sul nuovo compito, mentre il resto del modello rimane congelato (frozen) o subisce un addestramento limitato.