Metodi di Decoding: differenze tra le versioni
Nessun oggetto della modifica |
Nessun oggetto della modifica |
||
Riga 11: | Riga 11: | ||
== Links == | == Links == | ||
[https://huggingface.co/blog/how-to-generate Articolo su hugggingface con esempi di tutte le strategie] | [https://huggingface.co/blog/how-to-generate Articolo su hugggingface con esempi di tutte le strategie] | ||
[[Category:concetti]] |
Versione delle 10:22, 8 mar 2024
Sono le possibili strategie di scelta della parola seguente nei modelli di linguaggio autoregressivi, ovvero quei modelli che generano il seguente token o parola successiva considerando la probabilità dell'intera sequenza come prodotto delle probabilità delle singole parole successive.
Vi sono tre tipi principali:
- Greedy Search, che sceglie sempre la parola con la probabilità più alta
- Beam search, che calcola il prodotto delle probabilità fino alla profondità K, e ritorna la prima parola della sequenza con probabilità più alta
- Campionamento (decoding): introduce della variabilità, scegliendo in maniera casuale dalla distribuzione di probabilità delle seguenti N parole, data quella corrente - viene spesso utilizzando abbassando la temperatura del softmax per rendere più alta la probabilità delle parole più "probabili"
- Top-K Sampling, introdotta nel 2018, redistribuisce la probabilità lasciando solo le K parole più probabili
- Top-p (nucleus) sampling (2019) mantiene nel set di parole candidate solo quelle la cui probabilità cumulativa eccede una certa soglia, tipicamente 0.9