Tensore (Informatica): differenze tra le versioni
(Creata pagina con "Un tensore è una generalizzazione di vettori e matrici ed è un elemento fondamentale in PyTorch. È sostanzialmente un '''array multidimensionale''' che può variare da una dimensione (una linea di numeri, simile a un vettore) a diverse dimensioni (per esempio, matrici per 2D, array tridimensionali, ecc.). I tensori sono utilizzati per organizzare i dati per l'elaborazione di algoritmi di machine learning e possono essere manipolati efficacemente sia su CPU che su...") |
Nessun oggetto della modifica |
||
Riga 6: | Riga 6: | ||
Un tensore può avere anche tre, quattro, o più dimensioni. Queste dimensioni superiori sono spesso utilizzate in applicazioni di deep learning per rappresentare dati più complessi, come immagini (che possono essere rappresentate come tensori 3D per altezza, larghezza e canali di colore) o video (che possono essere rappresentati come tensori 4D aggiungendo la dimensione temporale ai tensori 3D delle immagini). | Un tensore può avere anche tre, quattro, o più dimensioni. Queste dimensioni superiori sono spesso utilizzate in applicazioni di deep learning per rappresentare dati più complessi, come immagini (che possono essere rappresentate come tensori 3D per altezza, larghezza e canali di colore) o video (che possono essere rappresentati come tensori 4D aggiungendo la dimensione temporale ai tensori 3D delle immagini). | ||
== Tutorial == | |||
[[Come creare un tensore su Pytorch]] |
Versione delle 10:11, 13 mar 2024
Un tensore è una generalizzazione di vettori e matrici ed è un elemento fondamentale in PyTorch. È sostanzialmente un array multidimensionale che può variare da una dimensione (una linea di numeri, simile a un vettore) a diverse dimensioni (per esempio, matrici per 2D, array tridimensionali, ecc.). I tensori sono utilizzati per organizzare i dati per l'elaborazione di algoritmi di machine learning e possono essere manipolati efficacemente sia su CPU che su GPU.
Un vettore è un tensore di ordine 1 o una dimensione che si presenta come a un array lineare di numeri. Ad esempio, un vettore contenente i numeri [1,2,3] può essere considerato un tensore unidimensionale.
Una matrice è un tensore di ordine 2 o due dimensioni. Questo significa che ha due assi: righe e colonne. Ad esempio, una matrice 2×3 è composta da due righe e tre colonne ed è un tensore bidimensionale.
Un tensore può avere anche tre, quattro, o più dimensioni. Queste dimensioni superiori sono spesso utilizzate in applicazioni di deep learning per rappresentare dati più complessi, come immagini (che possono essere rappresentate come tensori 3D per altezza, larghezza e canali di colore) o video (che possono essere rappresentati come tensori 4D aggiungendo la dimensione temporale ai tensori 3D delle immagini).